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Interfaces vs. Implementation

In class:
● Developed ALists and SLLists.
● Created an interface List61B.

○ Modified AList and SLList to implement List61B.
○ List61B provided default methods.

In projects:
● Developed ArrayDeque and LinkedListDeque.

○ Each class implemented the Deque interface.

List61B

AList SLList

Deque

Array
Deque

LinkedList
Deque



Interfaces vs. Implementation

With DisjointSets, we saw a much richer set of possible implementations.

DisjointSets

ListOfSetsDS QuickFindDS QuickUnionDS
WeightedQuickU

nionDS



Abstract Data Types

An Abstract Data Type (ADT) is defined only by its operations, not by its 
implementation. 

Deque ADT:
● addFirst(Item x);
● addLast(Item x);
● boolean isEmpty();
● int size();
● printDeque();
● Item removeFirst();
● Item removeLast();
● Item get(int index);

Deque

Array
Deque

LinkedList
Deque

ArrayDeque and LinkedList Deque are 
implementations of the Deque ADT.



Another example of an ADT: The Stack

Recall, the Stack ADT supports the following operations:
● push(int x): Puts x on top of the stack.
● int pop(): Removes and returns the top item from the stack.

insertBack()
getBack()

get(int i)
deleteBack()

push(int x)

pop()
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The Stack ADT: yellkey.com/likely

Recall, the Stack ADT supports the following operations:
● push(int x): Puts x on top of the stack.
● int pop(): Removes and returns the top item from the stack.

Which implementation do you think would result in faster overall performance?
A. Linked List
B. Array

insertBack()
getBack()

get(int i)
deleteBack()

push(int x)

pop()
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The Stack ADT

The Stack ADT supports the following operations:
● push(int x): Puts x on top of the stack.
● int pop(): Removes and returns the top item from the stack

Which implementation do you think would result in faster overall performance?
A. Linked List
B. Array

Both are about the same. No resizing for linked lists, so probably a lil faster.

insertBack()
getBack()

get(int i)
deleteBack()

push(int x)

pop()

4



The GrabBag ADT: yellkey.com/involve

The GrabBag ADT supports the following operations:
● insert(int x): Inserts x into the grab bag.
● int remove(): Removes a random item from the bag.
● int sample(): Samples a random item from the bag (without removing!)
● int size(): Number of items in the bag.

Which implementation do you think would result in faster overall performance?
A. Linked List
B. Array

insertBack()
getBack()

get(int i)
deleteBack()
remove()
insert(int x)

sample()
size(int i)



The GrabBag ADT

The GrabBag ADT supports the following operations:
● insert(int x): Inserts x into the grab bag.
● int remove(): Removes a random item from the bag.
● int sample(): Samples a random item from the bag (without removing!)
● int size(): Number of items in the bag.

Which implementation do you think would result in faster overall performance?
A. Linked List
B. Array

insertBack()
getBack()

get(int i)
deleteBack()
remove()
insert(int x)

sample()
size(int i)



Abstract Data Types in Java

One thing I particularly like about Java is the syntax differentiation between 
abstract data types and implementations.
● Note: Interfaces in Java aren’t purely abstract as they can contain some 

implementation details, e.g. default methods.

Example: List<Integer> L = new ArrayList<>();

List

ArrayList
Linked
List



Collections

Among the most important interfaces in the java.util library are those that extend 
the Collection interface (btw interfaces can extend other interfaces).
● Lists of things.
● Sets of things.
● Mappings between items, e.g. jhug’s grade is 88.4, or Creature c’s north 

neighbor is a Plip.
○ Maps also known as associative arrays, associative lists (in Lisp), symbol 

tables, dictionaries (in Python).

Collection

List Set Map



Map Example

Maps are very handy tools for all sorts of tasks. Example: Counting words.

Map<String, Integer> m = new TreeMap<>();
String[] text = {"sumomo", "mo", "momo", "mo",
                 "momo", "no", "uchi"};
for (String s : text) {
   int currentCount = m.getOrDefault(s, 0);
   m.put(s, currentCount + 1);
}

m = {}
text = ["sumomo", "mo", "momo", "mo", \
        "momo", "no", "uchi"]
for s in text:
   current_count = m.get(s, 0)
   m[s] = current_count + 1 Python 

equivalent

sumomo 1

mo 2

momo 2

no 1

uchi 1



Java Libraries

The built-in java.util package provides a number of useful:
● Interfaces: ADTs (lists, sets, maps, priority queues, etc.) and other stuff.
● Implementations: Concrete classes you can use.

Today, we’ll learn the basic ideas behind the TreeSet and TreeMap.

Collection

List Set Map

ArrayList
Linked
List

TreeSetHashSet TreeMapHashMap
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Analysis of an OrderedLinkedListSet<Character>

In an earlier lecture, we implemented a set based on unordered arrays. For the 
order linked list set implementation below, name an operation that takes worst 
case linear time, i.e. Θ(N).

size contains add iterator

A CB D E F G
sent

7

size

https://docs.google.com/presentation/d/1uItKUU8BDI8qSh_T8EO_0DWO34rKJtiO9nuoIj_VduE/edit#slide=id.g4eca586dfd_0_70


Analysis of an OrderedLinkedListSet<Character>

In an earlier lecture, we implemented a set based on unordered arrays. For the 
order linked list set implementation below, name an operation that takes worst 
case linear time, i.e. Θ(N).
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Optimization: Extra Links

Fundamental Problem: Slow search, even though it’s in order.

A CB D E F G

● Add (random) express lanes. Skip List (won’t discuss in 61B)

http://en.wikipedia.org/wiki/Skip_list


Optimization: Change the Entry Point

Fundamental Problem: Slow search, even though it’s in order.
● Move pointer to middle.

A CB D E F G



Optimization: Change the Entry Point, Flip Links

Fundamental Problem: Slow search, even though it’s in order.
● Move pointer to middle and flip left links. Halved search time!

A CB D E F G



Optimization: Change the Entry Point, Flip Links

Fundamental Problem: Slow search, even though it’s in order.
● How do we do even better?
● Dream big!

A CB D E F G



Optimization: Change Entry Point, Flip Links, Allow Big Jumps

Fundamental Problem: Slow search, even though it’s in order.
● How do we do better?

A CB D E F G
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Tree

A tree consists of:
● A set of nodes.
● A set of edges that connect those nodes.

○ Constraint: There is exactly one path between any two nodes.

Green structures below are trees. Pink ones are not.



Rooted Trees and Rooted Binary Trees

A

In a rooted tree, we call one node the root.
● Every node N except the root has exactly one parent, defined as the first node 

on the path from N to the root.
● Unlike (most) real trees, the root is usually depicted at the top of the tree.
● A node with no child is called a leaf.

In a rooted binary tree, every node has either 0, 1, or 2 children (subtrees).

B

C

A

B

C

A

C C

B
For each of these:
● A is the root.
● B is a child of A.     (and C of B) 
● A is a parent of B.    (and B of C) Not binary!

https://www.amusingplanet.com/2010/12/baobab-upside-down-tree.html


Binary Search Trees

A binary search tree is a rooted binary tree with the BST property.

BST Property. For every node X in the tree:
● Every key in the left subtree is less than X’s key.
● Every key in the right subtree is greater than X’s key.

dog

bag flat

alf cat elf glut

debt

bus ears

axe cow fish gut

Binary Tree, but not a Binary Search TreeBinary Search Tree



Binary Search Trees

Ordering must be complete, transitive, and antisymmetric. Given keys p and q:
● Exactly one of p ≺ q and q ≺ p are true.
● p ≺ q and q ≺ r imply p ≺ r.

One consequence of these rules: No duplicate keys allowed!
● Keeps things simple. Most real world implementations follow this rule.

dog

bag flat

alf cat elf glut

debt

bus ears

axe cow fish gut

Binary Tree, but not a Binary Search TreeBinary Search Tree
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Finding a searchKey in a BST (come back to this for the BST lab)

If searchKey equals T.key, return.

● If searchKey ≺ T.key, search T.left.
● If searchKey ≻ T.key, search T.right. 

dog

bag flat

alf cat elf glut



Finding a searchKey in a BST

If searchKey equals T.key, return.

● If searchKey ≺ T.key, search T.left.
● If searchKey ≻ T.key, search T.right. 

static BST find(BST T, Key sk) {
   if (T == null)
      return null;
   if (sk.equals(T.key))
      return T;
   else if (sk ≺ T.key)
      return find(T.left, sk);
   else
      return find(T.right, sk);
}

dog

bag flat

alf cat elf glut



BST Search: http://yellkey.com/leave

What is the runtime to complete a search on a “bushy” BST in the worst case, 
where N is the number of nodes.
A. Θ(log N)
B. Θ(N)
C. Θ(N log N)
D. Θ(N2)
E. Θ(2N)

“bushiness” is an intuitive concept 
that we haven’t defined.



BST Search

What is the runtime to complete a search on a “bushy” BST in the worst case, 
where N is the number of nodes.
A. Θ(log N)

Height of the tree is ~log2(N)



BSTs

Bushy BSTs are extremely fast.
● At 1 microsecond per operation, can find something from a tree of size 

10300000 in one second.

Much (perhaps most?) computation is dedicated towards finding things in 
response to queries.
● It’s a good thing that we can do such queries almost for free.
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Inserting a New Key into a BST

Search for key.
● If found, do nothing.
● If not found:

○ Create new node.
○ Set appropriate link.

Example: 
insert “eyes”

dog

bag flat

alf cat elf glut



Inserting a New Key into a BST

Search for key.
● If found, do nothing.
● If not found:

○ Create new node.
○ Set appropriate link.

eyes

Arms length recursion: A common rookie bad 
habit to avoid:

static BST insert(BST T, Key ik) {
  if (T == null)
    return new BST(ik);
  if (ik ≺ T.key)
    T.left = insert(T.left, ik);
  else if (ik ≻ T.key)
    T.right = insert(T.right, ik);
  return T;
}

  if (T.left == null)
    T.left = new BST(ik);
  else if (T.right == null)
    T.right = new BST(ik);

dog

bag flat

alf cat elf glut



Avoid Arms-Length Recursion

Better, but still not the best base case. 
Avoid arms-length recursion!

if (T == null)
  return new BST(ik);

if (T.left == null)
  T.left = new BST(ik);
else if (T.right == null)
  T.right = new BST(ik);

The best base case.

if (T.left.left == null)
  T.left.left = new BST(ik);
else if (T.left.right == null)
  T.left.right = new BST(ik);
else if (T.right.left == null)
  T.right.left = new BST(ik);
else if (T.right.right == null)
  T.right.right = new BST(ik);

This base case is too complicated. 
The recursion can take us further.
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Deleting from a BST

3 Cases:
● Deletion key has no children.
● Deletion key has one child.
● Deletion key has two children.

eyes

dog

bag flat

alf cat elf glut



Case 1: Deleting from a BST: Key with no Children

Deletion key has no children (“glut”):
● Just sever the parent’s link.
● What happens to “glut” node?

eyes

dog

bag flat

alf cat elf glut



Case 1: Deleting from a BST: Key with no Children

Deletion key has no children (“glut”):
● Just sever the parent’s link.
● What happens to “glut” node?

○ Garbage collected.

eyes

dog

bag flat

alf cat elf glut



Case 2: Deleting from a BST: Key with one Child

Example: delete(“flat”):

Goal:
● Maintain BST property.
● Flat’s child definitely larger than dog.

○ Safe to just move that child into flat’s spot.

Thus: Move flat’s parent’s pointer to flat’s child.
eyes

dog

bag flat

alf cat elf



Case 2: Deleting from a BST: Key with one Child

Example: delete(“flat”):

Goal:
● Maintain BST property.
● Flat’s child definitely larger than dog.

○ Safe to just move that child into flat’s spot.

Thus: Move flat’s parent’s pointer to flat’s child.
● Flat will be garbage collected (along with its instance variables). 

eyes

dog

bag flat

alf cat elf



Hard Challenge

Delete k.

e

b g

a d f

v

p y

m r x z

k



Case 3: Deleting from a BST: Deletion with two Children (Hibbard)

Example: delete(“dog”)

Goal:
● Find a new root node.
● Must be > than everything in left subtree.
● Must be < than everything right subtree.

Would bag work? 
eyes

dog

bag flat

alf cat elf glut



Example: delete(“dog”)

Goal:
● Find a new root node.
● Must be > than everything in left subtree.
● Must be < than everything right subtree.

Choose either predecessor (“cat”) or successor (“elf”).
● Delete “cat” or “elf”, and stick new copy in the root position:

○ This deletion guaranteed to be either case 1 or 2. Why?
● This strategy is sometimes known as “Hibbard deletion”.

Case 3: Deleting from a BST: Deletion with two Children (Hibbard)

eyes

dog

bag flat

alf cat elf glut



Hard Challenge (Hopefully Now Easy)

Delete k.

e

b g

a d f
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Hard Challenge (Hopefully Now Easy)

Delete k. Two solutions: Either promote g or m to be in the root.
● Below, solution for g is shown.
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b g

a d f
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Hard Challenge (Hopefully Now Easy)

Two solutions: Either promote g or m to be in the root.
● Below, solution for g is shown.

e
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g

a d
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v

p y

m r x z
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Sets vs. Maps

Can think of the BST below as representing a Set:
● {mo, no, sumomo, uchi, momo}

sumomo

momo

mo no

uchi

sumomo

mo

momo

no

uchi



Sets vs. Maps

Can think of the BST below as representing a Set:
● {mo, no, sumomo, uchi, momo}

But what if we wanted to represent a mapping of word counts?

sumomo

momo

mo no

uchi

sumomo

mo

momo

no

uchi

sumomo 1

mo 2

momo 2

no 1

uchi 1

????



Sets vs. Maps

To represent maps, just have each BST node store key/value pairs.

Note: No efficient way to look up by value.
● Example: Cannot find all the keys with value = 1 without iterating over ALL 

nodes. This is fine.

sumomo    1

momo  2

mo      2 no      1

uchi      1

sumomo 1

mo 2

momo 2

no 1

uchi 1



Summary

Abstract data types (ADTs) are defined in terms of operations, not implementation.

Several useful ADTs: Disjoint Sets, Map, Set, List.
● Java provides Map, Set, List interfaces, along with several implementations.

We’ve seen two ways to implement a Set (or Map): ArraySet and using a BST.
● ArraySet: Θ(N) operations in the worst case.
● BST: Θ(log N) operations in the worst case if tree is balanced.

BST Implementations:
● Search and insert are straightforward (but insert is a little tricky).
● Deletion is more challenging. Typical approach is “Hibbard deletion”. 
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static BST insert(BST T, Key ik) {
  if (T == null)
    return new BST(ik);
  if (ik ≺ T.label()))
    T.left = insert(T.left, ik);
  else if (ik ≻ T.label())
    T.right = insert(T.right, ik);
  return T;
}

Tips for BST Lab

● Code from class was “naked recursion”. Your BSTMap will not be.
● For each public method, e.g. put(K key, V value), create a private 

recursive method, e.g. put(K key, V value, Node n)
● When inserting, always set left/right pointers, even if nothing is actually 

changing.
● Avoid “arms length base cases”. Don’t check if left or right is null!

Always set, even if 
nothing changes!

Avoid “arms length base cases”.

  if (T.left == null)
    T.left = new BST(ik);
  else if (T.right == null)
    T.right = new BST(ik);


